Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J. venom. anim. toxins incl. trop. dis ; 27: e20200140, 2021. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1250256

ABSTRACT

Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. Methods Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. Results Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. Conclusion Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.(AU)


Subject(s)
Radiation, Ionizing , Tetanus , Enzyme-Linked Immunosorbent Assay , Gamma Rays , Tetanus Toxin , Cobalt
2.
Clinics ; 75: e2290, 2020. tab, graf
Article in English | LILACS | ID: biblio-1142772

ABSTRACT

OBJECTIVES: COVID-19 is a public health emergency of international concern whose detection in recovered asymptomatic patients is dependent on accurate diagnosis as it enables the estimation of the susceptibility of the population to the infection. This demand has resulted in the development of several commercial assays employing recombinant proteins, but the results of these assays are not reliable as they do not involve comparison with natural viral antigens. We independently used the SARS-CoV-2 whole viral antigen (WVA) and recombinant nucleocapsid protein (rNP) to develop in-house ELISAs for IgG detection; the results of these ELISAs were then compared to obtain reliable results. METHODS: WVA and rNP ELISAs were performed on COVID-19 negative sera from patients before the pandemic in Brazil, and on RT-qPCR-positive or SARS-CoV-2-IgG against rNP and IgG against WVA-positive samples from recently infected patients in Sao Paulo, Brazil. RESULTS: Both ELISAs detected a large fraction of infected patients but exhibited certain drawbacks. Higher signals and lower numbers of false-negatives were observed in rNP ELISA; however, a higher fraction of false-positives was observed in control groups. A high number of false-negatives was observed with WVA ELISA. Correlating the results of rNP and WVA ELISAs resulted in improved performance for COVID-19 diagnosis. CONCLUSION: The choice of antigen is an important aspect in optimizing the laboratory diagnosis of COVID-19. The use of rNP ELISA for the detection of anti-SARS-CoV-2 IgG antibodies seems promising, but comparison of the results with those of WVA ELISA is crucial for accurate test development prior to commercialization. IgG serology using several assays, and with the spectral patterns of SARS-CoV-2, resulted in confusing information that must be clarified before the establishment of diagnostic serology criteria.


Subject(s)
Humans , SARS-CoV-2 , COVID-19 , Brazil , Sensitivity and Specificity , Clinical Laboratory Techniques , COVID-19 Testing , Antibodies, Viral , Antigens, Viral
SELECTION OF CITATIONS
SEARCH DETAIL